HOSOKAWA ALPINE Aktiengesellschaft P.O. Box 10 11 51 86001 Augsburg, Germany Delivery address: Peter-Doerfler-Straße 13 – 25 86199 Augsburg, Germany

Phone: + 49 821 5906-0 Fax: + 49 821 5906-101 E-mail: mail@alpine.hosokawa.com

www.alpinehosokawa.com

Subject to change without notice. All information in this brochure is purely informative and non-binding. Our quotations are authoritative with regard to orders.

**POWDER AND PARTICLE PROCESSING** ALPINE CLASSIFYING TECHNOLOGY





Hosokawa Alpine is a member of the Hosokawa Micron Group, responding to global needs through emphasis on materials science and engineering. The Group is an international provider of equipment and technology for powder and particle processing, plastics processing and confectionery products. The Group maintains facilities for research, engineering, manufacturing and service in each of the world's major industrial markets.

© Hosokawa Alpine 2010. Printed in Germany.





# **HOSOKAWA ALPINE**

# **ONE COMPANY - TWO BUSINESS DIVISIONS**



# Hosokawa Alpine has been in business for over 100 years. Regardless of the field, i.e. blown film processing or powder & particle processing, we are traditional trendsetters on the market. The driving force behind refining our technologies is the experience we gain and the challenges we face as market leaders.

# POWDER & PARTICLE PROCESSING DIVISIONAL STRUCTURE

# a competent and innovative partner.

Formed in 1898, Hosokawa Alpine's range The name ALPINE stands for competence in includes the development, design and all areas of comminution technology. The manufacture of components and turnkey long years of close cooperation between our systems to produce powders, granules engineers and the development departments and bulk materials for the chemical, of our customers have made us leading pharmaceutical, food, minerals, metals and specialists for powder and particle processing recycling industries. Whether the task is technology around the world. Because our comminution, classification, dust removal, aim is to offer our customers the very best handling, metering, weighing or packing, in professional and accomplished advice you will always find Hosokawa Alpine to be tailored to their specific branch of industry, our powder and particle processing division is divided into five subdivisions:

- PHARMA & FOOD

# - Minerals & Metals

is used, we are the specialists.

# - CHEMICALS

The range of chemical products is just as wide - RECYCLING & GRANULATORS and diverse as are the different demands on products, as well as for toners, paints, are tailored to the individual requirements. pigments, herbicides or fertilisers.

The manufacture of powdery substances for We supply complete dry and wet processes Our service division gives support during however, but also competent partners for portfolio of services is a range of the engineering and design of complete pre-owned ALPINE machines. turnkey systems.

products means that we are able to meet a webs or film edge trims, our granulators are maintenance and system upgrades. vast number of different requirements. We designed for even the most difficult cutting also offer competent advice on solutions tasks. In addition, we also supply in-line for basic chemical products and auxiliary recycling solutions for rubber or cable which

# **BLOWN FILM PROCESSING**

As a specialist for film blowing lines to manufacture thin plastic film, Hosokawa Alpine ranks among the world's foremost suppliers in this market segment.

The vast fund of know-how, the high quality standards, the continuous innovation and high degree of reliability are all reasons for the constant growth of this business division.











- Service

the pharmaceutical industry is a job for with state-of-the-art mills and classifiers the entire lifetime of any Hosokawa Alpine specialists. Hosokawa Alpine conforms with for processing mineral raw materials. Our system or machine. Our extensive range international pharma standards and supplies machines and systems for fillers, ceramic raw of services includes spare parts supply, a wide range of products and performance, materials, metallic compounds and alloys maintenance, inspection, servicing, repairs, including special processes for the food all meet the high demands set by our general overhauls, system upgrading, and industry. Whatever method of size reduction customers. We are not just manufacturers, training. A fairly recent addition to our

No matter what part of the world you are in or what your processing challenge is, the properties of pigments or powders. We We design, build and deliver complete Hosokawa Alpine is never far away with supply process-technological solutions for granulator systems to include all necessary the best solutions and support. Our range the chemical industry as a single-source system components. Whether the feed of services includes project management, partner. Our comprehensive range of material is injection mouldings, sprues, film installation, commissioning, training,

# EVERYTHING FROM ONE SINGLE **RESPONSIBLE SOURCE.**



# **OVERVIEW**



Since the market introduction of the Mikroplex spiral air classifier MP in 1948, Alpine has continued with its successful development and manufacture of air classifiers.

# THE CLASSIFIER EXPERTS

We offer systems for a wide variety of different products and fineness ranges, tailored to meet with the technical and economical demands of the individual application.

# MULTI-PLEX ZIGZAG CLASSIFIERS MZM AND MZF

Gravity classifiers for sharp separations in the range 0.3 - 10 mm.

# VENTOPLEX AIR CLASSIFIER V

Circuit-air classifiers for high throughputs. Fineness range approx.  $d_{97} = 32 \ \mu m$  to 200 µm. Low energy consumption.

# MICRON AIR CLASSIFIER MS



product feed. Fineness range approximately d<sub>97</sub> 15 – 150 µm. High throughput rates.

Classifier designed for high throughput rates

STRATOPLEX AIR CLASSIFIER ASP

in the fine to medium separation range of d<sub>97</sub> 20 - 200 µm. High fines yield with low specific power consumption.

# TURBOPLEX ULTRAFINE CLASSIFIERS ATP AND ATP-NG

Single- and multi-wheel classifiers for ultrafine separations. Superfine powders in the fineness range of  $d_{97}$  3 – 10  $\mu$ m, and in NG design, finenesses down to  $d_{97}$  2  $\mu m$ (d<sub>50</sub> 0.5 µm) are possible. Spatter-grain free operation over the entire separation range. Integrated coarse material classifier increases the yield.

# TURBO-TWIN-CLASSIFIER TTC

Newly developed classifier wheel geometry pushing the limits of air classification to new levels - d<sub>50</sub> 0.5 µm achievable.

# **CLASSIFIERS TSP / TTSP**

One- or two-stage ultrafine classifier with a high precision of cut. Ideally suited for classifying toner and pigments, e.g. to minimise the ultrafine portion < 2 - 5  $\mu$ m (see separate brochure).

# **GRINDING AND CLASSIFICATION**

Where size reduction is required with control of particle size Alpine mills are operated either in conjunction with downstream classifiers or with an integral air classifier.

# ZIRKOPLEX CLASSIFIER MILL ZPS

Highly flexible air classifier mill for the processing of soft to medium hard materials. High-speed impact mill combined with single or multi-wheel Turboplex classifier for precise control of product topsize. Fineness range  $d_{97} < 10 - 200 \ \mu m$ .

ZIRKOPLEX ZPS

ALPINE SUPER ORION SO BALL MILL OPERATED IN CIRCUIT WITH AN ALPINE TURBOPLEX CLASSIFIER ATP

to produce a range of paper filler in coating quality (d<sub>80</sub> 2 µm) as well as coarse fillers (e.g. dolomite powder for road-work paint with a  $d_{97}$  of 100  $\mu$ m).

# **BALL-MILL SUPER-ORION**



JET MILL AFG



# FLUIDISED BED OPPOSED JET MILL AFG

For the processing of powders with a Mohs Hardness of up to 10, producing a steep particle size distribution with precise control of product topsize in the fineness range < 5 µm to 200 µm. Classifier wheel(s) incorporated into top section which is hinged back or removed for easy clean.



TABLE ROLLER MILL AWM WITH INTEGRATED CLASSIFIER TOP SECTION

For end-product finenesses of approx. 10 µm -100 µm. An MS classifier or Turboplex ultrafine classifier is integrated into the mill top section. The grinding process in the material bed is advantageous above all for flaky fillers such as talc or abrasive products such as feldspar.

# CLASSIFIER, MULTI-PLEX® CLASSIFIER MZM AND MZF

# VENTOPLEX<sup>®</sup> CLASSIFIER C



Alpine offers zigzag classifiers in two different designs: MZM and MZF. Each design is available in a range of machine sizes from a single-tube to a multi-tube classifier.

Ideal for sharp separations in the range  $d_{97}$  = approx. 0.3 - 10 mm. Throughputs can range from a few kg/h in the case of the laboratory classifier up to approx. 200 t/h for the industrial-scale multi-tube classifier.

Classification takes place at every change in direction of the Zig-Zag tube and permits an extremely high, steplessly adjustable precision of cut. The result is clean-cut fines or lightweight material, even under overload conditions.

# **FEATURES**

- Maintenance-free and wear-resistant
- Overload-proof
- Insensitive to changes in the feed material composition

Because of these characteristics once set, the classifying system can be operated over long periods without any supervision at all



# MZM DESIGN

Feature: Feed material introduced into the middle part of the zigzag tube.



Feature:

**MZF DESIGN** 

Feed material introduced at the lower end of the classifying tube via a flybed channel. MZF classifiers are used for granular materials that are either freeflowing or can be dispersed with air.



# APPLICATIONS AREA

# **OLEAGINOUS FRUITS**

Classifying systems for separating cracked soy beans or sunflower seeds.

# PRECIOUS METALS

The separation of copper, aluminium or lead from the insulation material of previously cut cable scrap.

Dust removal from plastic granules, coke, chalk, fertilizers, bauxite, etc.



Fineness range approx. d<sub>97</sub> = 32 μm – 200 μm.



**FUNCTION** 

S D

The Ventoplex C is an internal recirculation air classifier. In contrast to the former Ventoplex B with central drive, the new C design has a separately driven classifying wheel. In the new machine, the fan and classifying wheel are coaxially arranged and are driven by means of two separate hollow shafts. This makes it possible for the user to set different speeds and thus permits a significant extension of the fineness range from currently 32 µm to 200 µm.

The product is fed to the centre of the classifier head via a hollow shaft, from which the material falls onto a centrifugal plate underneath the classifying wheel. The centrifugal plate distributes the feed material uniformly in the classifying chamber. Coarse particles fall against the upward flow of classifying air to the bottom, collect in the coarse material cone and are discharged through the side of the

machine via a gravity chute. Fine particles in the feed material become entrained in the upward flow of classifying air and enter the classifying wheel along with the classifying air.

The particles in the classifying wheel are classified by the two competing forces, namely centrifugal force and flow force. Coarse particles are rejected by the centrifugal force, whereas for the fine particles, the drag force of the air flow predominates, allowing the particles to pass through the classifying wheel. The Ventoplex air classifier requires no additional external dust collector to separate the fines.

| entoplex Typ C                      | C9V      | C12V       | C15V            | C18V        | C21V     | C25V          | C28V                                                | C32V     | C36V     |  |
|-------------------------------------|----------|------------|-----------------|-------------|----------|---------------|-----------------------------------------------------|----------|----------|--|
| cale-up factor F = approx.          | 1        | 1.8        | 2.8             | 4           | 5.6      | 8             | 10                                                  | 12.5     | 16       |  |
| rive power of internal fan kW       | 3.0      | 5.5        | 7.5             | 11          | 15       | 22            | 30                                                  | 37       | 55 - 75  |  |
| Naterial feed:                      |          | from above | centrally via h | ollow shaft |          | from the side | om the side via feed screw or air conveying channel |          |          |  |
| rive power of classifier kW         | 1.5      | 2.2        | 3.0             | 4.0         | 5.5      | 7.5           | 11                                                  | 15       | 22       |  |
| Iax. classifier speedrpm            | 1120     | 800        | 670             | 560         | 475      | 400           | 355                                                 | 315      | 280      |  |
| lax. feed rate t/h                  | 3        | 5          | 8               | 12          | 17       | 24            | 30                                                  | 38       | 48       |  |
| neness d <sub>97</sub> = approx. μm | 32 - 200 | 32 - 200   | 32 - 200        | 32 - 200    | 32 - 200 | 40 - 200      | 40 - 200                                            | 45 - 250 | 50 - 250 |  |
| ines yield *) d <sub>97</sub>       |          |            |                 |             |          |               |                                                     |          |          |  |
| 32 µm t/h                           | 0.4      | 0.7        | 1.1             | 1.6         | 2.2      |               |                                                     |          |          |  |
| 45 μm t/h                           | 0.5      | 0.9        | 1.5             | 2.2         | 3.0      | 4.3           | 5.4                                                 | 6.8      | (8.5)    |  |
| 63 µm t/h                           | 0.7      | 1.2        | 1.9             | 2.8         | 3.9      | 5.6           | 7.0                                                 | 8.8      | 11.2     |  |
| 90 µm t/h                           | 0.9      | 1.6        | 2.5             | 3.6         | 5.0      | 7.2           | 9.0                                                 | 11.3     | 14.4     |  |
| 200 µm t/h                          | 1.6      | 2.9        | 4.5             | 6.4         | 9.0      | 12.8          | 16                                                  | 20       | 25.6     |  |
|                                     |          |            |                 |             |          |               |                                                     |          |          |  |

\*) Reference material: limestone with density 2700 kg/m<sup>3</sup>; feed material with 70%  $< d_{97}$ 





# APPLICATION AREAS

Limestone, quick lime, fertilising lime, feed lime, bentonite, dolomite, gypsum, chamotte, quartz, feldspar, pegmatite, raw kaolin, ore, phosphor, glass powder, abrasives, rice flour, bone meal, etc. Because of the high wear resistance and the high achievable fines throughput, the Ventoplex air classifier is ideal for use in the mineral powder industry, especially for ceramic powders that need to be produced without iron contamination.

# FEATURES

- -Wide fineness range
- -High fines throughput rate
- Insensitive to overload
- -Low specific energy consumption
- -Low peripheral speed
- -Low air circulation rate
- -Low overall height
- -Good accessibility for inspections
- Maintenance-friendly design, use of inexpensive wear parts and thus low maintenance costs

# **ER** MICRON<sup>®</sup> AIR CLASSIFIER MS



The Micron air classifier is a robust air-stream classifier for separations in the medium fineness range at high throughput rates.

# MICRON AIR CLASSIFIER MS

Robust air-stream classifier (pneumatic product The MS classifier wheel is suspended from a feed) for high throughputs.

Fineness range:

approx.  $d_{97} = 15 - 150 \mu m$ . The slow rotation of the MS wheel in the medium fineness range brings advantages regarding the pressure drop and wear rate. The classifier can also be operated with high air flow rates.

# PRINCIPLE OF OPERATION

The feed material enters the classifier with the main air flow which can be a highly cost effective process option if integrated into a system with direct pneumatic feed. The classifying wheel is driven by a belt drive and a three-phase asynchronous motor. The classifying wheel speed can be steplessly adjusted by means of a frequency converter. By altering the classifying wheel speed, the particle size can be easily adjusted even during operation. Fine particles whose size is below the set cut point are transported through the rotor blades along with the classifying air, then discharged via the fines discharge in the main air flow, and finally collected in a suitable filter. Coarse particles are rejected by the classifying wheel and discharged via the coarse material discharge. Before being discharged, the coarse material is rinsed intensively in a spiral flow taken from the secondary air stream to remove any last fines, i.e. this final classification step improves the precision of cut and increases the fines yield.

vertical shaft and is of welded construction. The vanes of the wheel are inclined and tapered into a conical shape. During operation oversize product is deflected away from the rotating wheel.

The MS Micron air classifier unit can be operated in closed circuit operation with a ball mill or as a classifier head in conjunction with a table roller mill.

# APPLICATION AREAS

Talc, calcium carbonate, bentonite, kaolin, loam, dolomite, quartz, kieselguhr, pigments, fine-grade chemicals, etc.







FOR ABRASIVE MATERIAL

# DESIGNS

For operation on abrasive materials the classifier can be offered in a wear protected design. For applications in the food or pharmaceutical industries, the classifier can be manufactured in stainless steel.

| Micron Air Classifier Type            | MS-1H      | MS-2H       | MS-3H       | MS-4H        | MS-5H         | MS-6H         |
|---------------------------------------|------------|-------------|-------------|--------------|---------------|---------------|
| Scale-up factor F = approx.           | 1          | 2.7         | 5           | 10           | 20            | 40            |
| Drive power kW                        | 5.5        | 11          | 15          | 30           | 45            | 55            |
| Max. speed rpm                        | 5000       | 3300        | 2500        | 1600         | 1100          | 800           |
| Air flow rate m <sup>3</sup> /h       | 900 - 1600 | 2400 - 3600 | 4800 - 9000 | 9000 - 18000 | 18000 - 33000 | 36000 - 72000 |
| Fineness d <sub>97</sub> = approx. μm | 7          | 8.5         | 10          | 12.5         | 15            | 18            |
| Fines yield, max* d <sub>97</sub>     |            |             |             |              |               |               |
| 15 μm in t/h                          | 0.16       | 0.45        | 0.90        | 1.50         |               |               |
| 20 µm in t/h                          | 0.2        | 0.6         | 1.1         | 2.1          | 4.2           | 8.4           |
| 45 μm in t/h                          | 0.3        | 0.8         | 1.6         | 2.9          | 5.9           | 12.0          |
| 63 µm in t/h                          | 0.4        | 0.9         | 1.8         | 3.4          | 6.7           | 13.5          |

\* Feed material with 70 % <  $d_{97}$ , capacities with minimum airflow rate

# 1 Feed bin

- 2 Feed metering unit 3 Change-over flap
- 4 Super orion ball mill
- 5 MS air classifier
- 6 Rotary valve
- 8 Control valve
- 9 Fan



| 00 | 100 |
|----|-----|
|    | -   |
| -  | 4   |
| 1  |     |
|    |     |



# Automatic reverse jet filter

# STRATOPLEX<sup>®</sup> AIR CLASSIFIER ASP

Stratoplex air classifiers are budget-priced standard classifiers for the fine to medium separation range.

Deflector-wheel classifier for the mediumfine separation range between approx.  $d_{97} = 20 - 200 \ \mu m$ . The Stratoplex is a cost-effective classifier characterised by it's high precision of cut, high fines yield, low energy consumption and ease of adjustment. The cut point can be adjusted by means of a frequency converter as a function of the classifying wheel speed. The two design variants - one equipped for separations in the fine range, the other for separations in the coarse range - make it easy to adjust the classifier for optimum performance on the particular application.

The quality of classification is maintained even when the feed rate is high. And the low pressure drop of only 600 - 800 daPa for the entire classifying system permits extremely low-energy operation.



EOUIPMENT

# SIMPLE DESIGN

# FEATURES

The ASP classifier can be operated in the following modes:

- through-air mode - circuit-air mode with approx.
- 10% leakage air

The compact and modular design of the Stratoplex air classifier results not only in maximum performance at modest dimensions, but also permits an easy and space-saving system configuration. And because most of the main components can be accessed easily from above, Stratoplex air classifiers are quick and easy to maintain.

In spite of the fact that the wear rate is relatively low, all major productcontact components of the Stratoplex air classifier can be equipped with special wearprotection elements, e.g.

- PUR

- Al<sub>2</sub>O<sub>3</sub> - Naxtra

WEAR PROTECTION

PRINCIPLE OF OPERATION

Because the drive of the Stratoplex air classifier is fitted underneath the classifying zone and the feed product is fed centrally from above, the result is an optimum distribution and dispersion of the product. The feed product is charged by means of the feed unit via the product intake to the centrifugal plate of the classifying wheel, where it is distributed uniformly and radially dispersed towards the baffle ring. The feed material is deflected by the baffle ring and routed downwards into the classifying zone.

The classifying air enters the spiral housing and flows through the helical vanes of the vane ring and the classifying wheel in a centripetal direction. The fines portion is removed thereby from the feed material as it gravitates downwards in the classifying zone, i.e. the zone between the vane ring and the classifying wheel.

The fines, extracted as a function of the cut point set on the classifier, are entrained in

the classifying air and flow towards the fines discharge. The fines must be separated from the classifying air in a downstream collection device (cyclone, filter). The coarse material is rejected by the classifying wheel and falls down into the lower section of the classifier.

The coarse material discharge must be airsealed by means of a rotary valve. Rinsing air, either drawn in automatically or supplied under pressure, prevents unclassified product from migrating into the fines through the gap between the classifying wheel and the labyrinth seal.

| Stratoplex ASP Type                   | 315  | 400  | 500  | 630   | 800   | 1000  | 1250  | 1500  | 1800  |
|---------------------------------------|------|------|------|-------|-------|-------|-------|-------|-------|
| Statepick/ibi ijpe                    |      | -100 |      |       |       |       |       |       |       |
| Scale-up factor F = approx.           | 1    | 1.6  | 2.5  | 4     | 6.4   | 10    | 16    | 25    | 33    |
| Drive power kW                        | 5.5  | 7.5  | 11   | 15    | 22    | 37    | 55    | 90    | 132   |
| Speed / coarse rpm                    | 2000 | 1600 | 1250 | 1000  | 800   | 630   | 500   | 420   | 350   |
| Speed / fine rpm                      | 4000 | 3200 | 2500 | 2000  | 1600  | 1250  | 1000  | 840   | 700   |
| Air flow rate m <sup>3</sup> /h       | 2500 | 4000 | 6300 | 10000 | 16000 | 25000 | 40000 | 64000 | 82000 |
| Fineness d <sub>97</sub> = approx. µm | 8    | 9    | 10   | 11    | 13    | 15    | 17    | 20    | 25    |
| Fines yield, max*) d <sub>97</sub>    |      |      |      |       |       |       |       |       |       |
| 20 µm in t/h                          | 1.8  | 2.1  | 2.7  | 3.2   | 3.8   | 5.5   | 6.8   | 10    | -     |
| 63 µm in t/h                          | 2.2  | 3.6  | 5.4  | 9     | 14    | 22    | 36    | 50    | 80    |
| 90 µm in t/h                          | 2.5  | 4    | 6    | 10    | 16    | 25    | 40    | 55    | 80    |
|                                       |      |      |      |       |       |       |       |       |       |

\*) Feed material with 70%  $< d_{97}$ 



CLASSIFYING WHEEL VANE WITH BONDED CERAMIC OVERLAY



The classifying wheel is usually driven via a V-belt drive with a fixed transmission ratio; the classifier speed can be set by means of a frequency converter. The classifier is delivered complete with filter, fan and cyclone.

# **APPLICATION AREAS**

Alpine's ASP classifiers are used above all for processing feldspar, quartz, nepheline, wollastonite, etc.

The Stratoplex ASP is also available in a special design for processing products such as hydrated lime that tend to deposit.

# **ER** TURBOPLEX<sup>®</sup> AIR CLASSIFIER ATP



The Turboplex classifier is the classic all-rounder, offers the most variations and application possibilities, and is available as a single-wheel or multi-wheel classifier.

# HORIZONTAL CLASSIFIER WHEEL

Although the first ATP classifiers (1981) still had vertically arranged classifying wheels, trials showed relatively quickly that a horizontal arrangement is much more advantageous for the Turboplex. There is no need to deflect the fines, meaning that problems with sticky products or hard agglomerates are avoided and that the classifying wheel operates in a product cloud and is thus always uniformly charged.

Close manufacturing tolerances make it possible to set a very small rinsing gap which enables particle spatter to be avoided. The maintenance of precise tolerances in the case of the bearings ensures a long service life.

# PRINCIPLE OF OPERATION

After entering the machine, the classifying air flows through the classifying wheel in a centripetal direction. In the process, the FEATURES

# ENLARGED FINES DISCHARGE



SINGLE-WHEEL ATP

classifying wheel extracts the fines from the feed material and conveys them to the fines discharge. The coarse material rejected by the classifying wheel gravitates downwards. The air routing shown in the schematic on the right is much simplified, because before the coarse material exits the classifier, it is rinsed again intensively by air to remove the remaining fines. This results in an extremely clean coarse fraction.

The product is fed either via a rotary valve or in the case of an air-flow classifier, entrained in the classifying air. Product fineness is controlled by adjustment of the classifier wheel speed using a frequency converter. The horizontal arrangement of the classifying wheel means that even "difficult" products can be processed with no problem.

There is hardly another type of classifier that is so well adapted to the demands of practical operation as the Turboplex ultrafine classifier:

- The simple and robust design reduces costs for maintenance and servicing
- The horizontal arrangement of the classifying wheel reduces wear even with abrasive products and guarantees a long service life
- If processing extremely abrasive products,
- a wear-protection lining prevents
- excessive wear
- Modest space requirement
- High fines yield

- Sharp top size limitation.

- Stable operation even if the feed rate
- fluctuates
- Long service life
- Coating formation prevented, e.g. when
- classifying CaCO3
- Rinsing gap easy to adjust
- Narrow rinsing gap possible
- Vibration-free

# WEAR PROTECION

The applied materials and the wear protection is customised for individual applications. For the pharmaceutical industry the ATP is manufatured in stainless steel.

# DESIGNS

For applications on explosive materials, in addition to the standard machine design, with the exception of the 750 ATP and the 1000 ATP all classifiers in the range are available in explosion-pressure-shockproof design to 10 bar overpressure.

# TURBOPLEX ATP SINGLE-WHEEL CLASSIFIER

| Turboplex ATP Type                    | 100   | 140   | 200   | 315   | 400   | 500   | 630   | 750    | 1000   |
|---------------------------------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| Scale-up factor F = approx.           | 0.25  | 0.5   | 1     | 2.5   | 4     | 6.25  | 10    | 14     | 25     |
| Drive power kW                        | 4     | 5.5   | 5.5   | 11    | 11    | 22    | 30    | 37     | 45     |
| Max. Speed rpm                        | 11000 | 8500  | 6000  | 4000  | 3150  | 2400  | 2000  | 1600   | 1200   |
| Max. air flow rate m <sup>3</sup> /h  | 300   | 600   | 1200  | 3000  | 4800  | 7500  | 12000 | 17000  | 30000  |
| Fineness d <sub>97</sub> = approx. µm | 4-100 | 5-120 | 5-120 | 6-150 | 7-150 | 8-150 | 9-200 | 10-200 | 12-200 |
| Fines yield max *) d <sub>97</sub>    |       |       |       |       |       |       |       |        |        |
| 8 µm in t/h                           | 0.035 | 0.070 | 0.14  | 0.35  | 0.56  | 0.80  | 1.2   | -      | -      |
| 20 µm in t/h                          | 0.07  | 0.14  | 0.28  | 0.70  | 1.12  | 1.75  | 2.8   | 3.9    | 6.5    |
| 45 μm in t/h                          | 0.1   | 0.2   | 0.4   | 1.0   | 1.6   | 2.5   | 4.0   | 5.6    | 9.5    |

# **TURBOPLEX ATP MULTI-WHEEL CLASSIFIER**

| Turboplex ATP Type                    | 100/4 | 140/4 | 200/4   | 315/3  | 315/6  | 500/3  | 500/4  | 630/4  |
|---------------------------------------|-------|-------|---------|--------|--------|--------|--------|--------|
| Scale-up factor F = approx.           | 1     | 2     | 4       | 7.5    | 15     | 19     | 25     | 40     |
| Drive Power kW                        | 4 x 3 | 4 x 4 | 4 x 5.5 | 3 x 11 | 6 x 11 | 3 x 15 | 4 x 15 | 4 x 22 |
| Max. Speed rpm                        | 11000 | 8500  | 6000    | 4000   | 4000   | 2400   | 2400   | 2000   |
| Max. air flow rate m <sup>3</sup> /h  | 1200  | 3000  | 4800    | 9000   | 18000  | 22500  | 30000  | 48000  |
| Fineness d <sub>97</sub> = approx. µm | 4-100 | 5-120 | 5-120   | 6-150  | 6-150  | 8-150  | 8-150  | 9-200  |
| Fines yield max.*) d <sub>97</sub>    |       |       |         |        |        |        |        |        |
| 8 µm in t/h                           | 0.14  | 0.28  | 0.56    | 1.0    | 2.1    | 2.4    | 3.2    | 4.8    |
| 20 µm in t/h                          | 0.28  | 0.56  | 1.12    | 2.1    | 4.2    | 5.2    | 7      | 11     |
| 45 µm in t/h                          | 0.4   | 0.8   | 1.6     | 3      | 6      | 7.5    | 10     | 16     |

\*) Feed material with 70% < d<sub>97</sub>







# CLASSIFIER TURBOPLEX<sup>®</sup>-MULTI-WHEEL CLASSIFIER



Scale-up through the classifier range to achieve greater throughputs influences not only capacity but also the performance of the classifier in terms of the cut point and the precision of cut.

Superfine end products can usually only be manufactured with relatively small classifiers, i.e. laboratory or pilot units, and naturally only in correspondingly small amounts. Once the pilot plant is scaled up to production scale, the desired ultrafine separation is no longer achievable.

Theoretically, during classification of particles separated in the field of centrifugal force, an equilibrium of forces is established between the centrifugal force and the drag force of the fluid flowing around it. According to Stoke's law (Re < 1), which applies in the case of very fine particles examined here, the following is obtained for the diameter of the cut-size:

 $x_{T} = F \cdot \sqrt{\frac{\eta_{L} \cdot w_{r}}{\rho_{S} \cdot u^{2}}} \cdot D$ 

The cut point size x<sub>T</sub> is proportionate to the root of the radial air velocity wr and the root of the collector diameter D, and inversely proportional to the peripheral velocity u ( $\eta_1$  = dynamic viscosity of the air,  $\rho_{S}$  = density of solid, F = adaptation parameter). For small particle diameters, therefore, it is best to target low flow rates, small classifying wheel dimensions and high peripheral speeds.

The equation also delivers the basis for Alpine's multi-wheel principle: a small wheel can separate finer assuming constant operating conditions.

In order to satisfy the demand for superfine products at high throughput rates Alpine developed the concept of the Turboplex multi-wheel classifier whereby several smaller classifier wheels are installed in a single machine. This multi-wheel concept enables the production of superfine products, typically in the 3 - 6 µm range, with an extremely high fines yield at an optimum precision of cut.

The multi-wheel Turboplex classifier operates in conjunction with a single cyclone / filter and fanset so represents a cost effective method of achieving superfine separations at high throughput rates.

Dependent on the end-product fineness, the feed product and the machine size, the feed rate of Turboplex multi-wheel classifiers ranges between about 150 and 30,000 kg/h.

# APPLICATION AREAS

Especially developed for ultrafine classifying operations, Alpine's multi-wheel classifiers are ideal for processing metal powders, mineral powders, abrasives, toner, and wax.



**1** Several horizontal classifying wheels of the same diameter are driven independently. The common speed control is accomplished by a frequency converter 2 The product is either gravity fed from the side via a rotary valve or is fed entrained in the flow of classifying air 3 Common fines discharge 4 Coarse material discharge with optimised coarse material classifying



# PRINCIPLE OF OPERATION

Besides first-class performance, Turboplex multi-wheel classifiers offer numerous technical and operating advantages:

- Instead of a number of small parallelconnected classifiers, only one single classifier for superfine end products and high throughput rates
- The product is fed via only one single port; this means that only one metering unit is required
- The fines are discharged through a common outlet duct, enabling simple adjust of airflow through the machine - The coarse material is collected at only one exit point

Because of the high throughput rates, Turboplex multi-wheel classifiers can be combined in circuit with correspondingly large mills.



# MULTI-WHEEL CLASSIFIER 630/4 ATP



# **CERAMIC LINING**





# WEAR PROTECTION

**Classifier wheels:** 

- Al<sub>2</sub>O<sub>3</sub> all-ceramic for sizes ATP 50, 100, 200 and 315
- SiC for the sizes 100 and 200
- Steel classifying wheel with tungsten carbide coating

Product-contact classifier parts:

- PUR lining
- Ceramic lining
- Exchangeable steel wear-protection elements with welded special alloy

# TURBOPLEX<sup>®</sup> ATP-NG

Multi-wheel classifiers are the classifier of choice for ultrafine classifying operations, and because the particle diameter is also directly dependent on the classifying wheel diameter, it is possible in the majority of cases to fulfil customer requirements.

**FEATURES** 

# THE TURBOPLEX ATP-NG

In a grinding-classifying circuit, the amount of energy needed for the classification increases with increasing end-product fineness. This fact gave rise to the demand for a low-energy classifier that was capable of achieving fineness values in the range of  $d_{50}$  < 1  $\mu$ m. The "New Generation" Turboplex (ATP-NG) operates in accordance with a completely new classifying principle that is based on the concept of solid-bed flow instead of the conventional potential flow. This new concept has made it possible to reduce the pressure drop and the entire classifying energy quite considerably. A special vane geometry permits a uniform material flow and thus an even finer classification. The advantages of this new classifier generation are especially conspicuous when used in the submicron range: low energy consumption at high yield. Another plus point is the ease with which existing ATP classifiers can be upgraded with the new classifying wheels.

With the new NG wheels, it has been possible to reduce the pressure drop by approx. 60 % when compared with the ATP standard classifying wheel.

And because in the ultrafine range, it has also been possible to improve the yield, the result in many cases is an energy saving of between 30 and 50 % referred to the fines yield. With the new classifier generation, end-fineness values are possible that were to date inconceivable with production-scale systems. And in combination with new mills, e.g. the Hosokawa Alpine ball mill S.O.-SF or the agitated ball mill ATR, fine products with a  $d_{50}$  of 0.7 and even 0.3  $\mu$ m have been achieved.

Whereas when manufacturing ultrafine limestone and talc filler it is the fineness of the classification that is all-important, other applications target a coarse end product with a particle size distribution that is as steep as possible. Here, too, the new generation of classifiers has proved itself.

In contrast to conventional methods, it was possible in this particular case to increase the coarse yield with the new classifier from 33 % to 38 % without any appreciable change to the quality of the coarse material. At the same time, the reduction of the pressure drop also led here to substantial energy savings.

- 30 50 % less energy requirement in comparison with the standard Turboplex classifier
- Classification down to  $d_{50} = 0.5 \ \mu m$
- High fines yield
- Easy Upgrade conversion of existing machines to ATP-NG design can be achieved by simple replacement of the classifier wheel and drive unit.

# WEAR PROTECTION

- Classifying wheels with tungsten carbide. (Ceramic classifying wheels are not used with the ATP-NG.)





| Turboplex ATP-NG Type                 | 315       | 500       | 630     | 750     | 315/3     | 315/6     | 500/3     | 500/4     | 630/4     |
|---------------------------------------|-----------|-----------|---------|---------|-----------|-----------|-----------|-----------|-----------|
| Scale-up factor F = approx.           | 2.5       | 6.25      | 10      | 13.5    | 7.5       | 15        | 19        | 25        | 40        |
| Drive power kW                        | 18.5      | 30        | 45      | 55      | 3 x 18.5  | 6 x 18.5  | 3 x 30    | 4 x 30    | 4 x 45    |
| Max. speed rpm                        | 5600      | 2800      | 2400    | 1920    | 5600      | 5600      | 2800      | 2800      | 2400      |
| Max. air flow rate m <sup>3</sup> /h  | 3500      | 8800      | 14000   | 22000   | 10500     | 20000     | 26000     | 35000     | 56000     |
| Fineness d <sub>97</sub> = approx. µm | 2.5 - 150 | 3.5 - 150 | 6 - 200 | 7 - 200 | 2.5 - 150 | 2.5 - 150 | 3.5 - 150 | 3.5 - 150 | 6.0 - 200 |
| Fines yield max*) d <sub>97</sub>     |           |           |         |         |           |           |           |           |           |
| 4 µm in t/h                           | 0.10      | 0.25      | -       | -       | 0.3       | 0.6       | 0.75      | 1.0       | -         |
| 5 μm in t/h                           | 0.2       | 0.45      | -       | -       | 0.5       | 1.1       | 1.3       | 1.8       | -         |
| 6 μm in t/h                           | 0.3       | -         | -       | 0.8     | -         | -         | -         | -         | -         |
| 8 μm in t/h                           | 0.4       | 1.0       | 1.6     | 2       | 1.2       | 2.3       | 3.0       | 4.1       | 6.2       |
| 10 µm in t/h                          | 0.6       | 1.3       | 2.0     | 2.6     | 1.5       | 3.1       | 3.9       | 5.3       | 8.5       |
| *) Free land to the 200/              |           |           |         |         |           |           |           |           |           |

\*) Feed material with 70% < d<sub>97</sub>





# **TURBO TWIN CLASSIFIER TTC**



This new classifier for fineness values of  $d_{97}$  between 2 and 4  $\mu$ m at high product yields is ideal for the ultrafine classification of mildly abrasive products such as limestone, talc, silica, graphite, barite, mica and kaolin.

The patented classifying wheel geometry of the Turbo Twin permits high throughput rates and loading factors at a steep top cut, and therefore constitutes an attractive alternative to the Alpine multi-wheel classifiers. The low pressure drop results in an even lower energy consumption than that of the ATP.

The classifying wheel is supported at both The classifying wheel is driven by means ends and permits extremely high speeds, i.e. peripheral speeds of up to 120 m/s can be pneumatic.

The classifier bottom section corresponds to that of the ATP, meaning that any existing ATP machine can be retrofitted with the TurboTwin classifier.

FORCED VORTEX FLOW IN CLASSIFYING WHEEL

of a three-phase asynchronous motor with frequency converter and flat belt drive. realised. Product feed is either by gravity or There are currently 5 machine sizes with drive outputs between 18.5 and 132 kW available.

# APPLICATION AREAS

- Superfine end products

- Mildly abrasive feed products, e.g. limestone, talc, silica, graphite, barite, mica, kaolin

# WEAR PROTECTION

- Naxtra classifying wheel
- and tungsten carbide coating



# 1 Feed bin

- 2 Feed metering device
- 3 Diverter valve 4 Super Orion Ball Mill S.O.
- 5 Bucket elevator
- 6 Safety screen
- **T** Stratoplex Classifier ASP
- 8 Cyclone
- In Turbo Twin Classifier TTC
- 10 Product collection filter
- 11 Fan
- 12 Nuisance dust extraction
- 13 Control cabinet

| Turbo Twin Classifier TTC Type        | 200   | 315  | 500   | 630   | 710   |
|---------------------------------------|-------|------|-------|-------|-------|
| Scale-up factor F = approx.           | 1     | 2.5  | 6.25  | 10    | 12.5  |
| Drive power kW                        | 18.5  | 30   | 55    | 90    | 132   |
| Max. speed rpm                        | 10000 | 7300 | 4600  | 3650  | 3250  |
| Max. air flow rate m³/h               | 1600  | 4000 | 10000 | 18000 | 25000 |
| Fineness d <sub>97</sub> = approx. µm | 2.5   | 3    | 3.3   | 3.5   | 4     |
| Fines yield max*) d97                 |       |      |       |       |       |
| 3 µm in t/h                           | 0.04  | 0.09 | -     | -     | -     |
| 4 µm in t/h                           | 0.07  | 0.18 | 0.42  | 0.63  | -     |
| 5 µm in t/h                           | 0.11  | 0.26 | 0.65  | 0.98  | 1.3   |
| 6 µm in t/h                           | 0.14  | 0.35 | 0.88  | 1.4   | 1.9   |
| 8 µm in t/h                           | 0.23  | 0.56 | 1.4   | 2.3   | 2.9   |
| 10 μm in t/h                          | 0.28  | 0.79 | 1.8   | 2.8   | 3.5   |

\*) Feed material with 70%  $< d_{97}$ 





# **PRODUCTON OF DUSTFREE COARSE** WITH THE CLASSIFIER TSP AND TTSP

# SYSTEM EXAMPLE LIMESTONE FILLER FOR THE PAINT INDUSTRY



In contrast to all other ultrafine classifiers featured in this brochure, the TSP is not oriented towards obtaining spatter-grainfree fines but rather towards the achievement of clean coarse fractions. Thanks to the



# **TONER CLASSIFIER 200 TTSP**

special design of this classifier, the coarse material can no longer be contaminated by fresh material once it has passed through the classifying zone. This results in highquality coarse material and extremely good yields. In other cases, the separated fines must often be reprocessed, and this naturally involves costs. In other words, the high coarse yields make an effective and lasting contribution towards reducing

production costs. The two following graphs document the dust removal efficiency and the respective coarse material yield.

The classifier is employed in all those cases where the requirement is for high-quality dust removal - for example, in the case of pigments, silicic acid, powder coatings, chemical additives and toner.

(See separate brochure "Powder and particle processing for the toner industry".)



SIZE 100 TTSP READY FOR SHIPMENT

# DESIGN VARIANTS TSP

- Pressure-shock-proof design
- to 10 bar overpressure
- Mild steel
- Stainless steel
- Small classifiers in monobloc design - To order, product-contact surfaces
- polished to Ra 0.8 µm
- Wear-protected (hard-metal-coated) classifying wheel.

| TSP Classifier        | Туре               | 200 | 250 | 315  | 400  | 500  |
|-----------------------|--------------------|-----|-----|------|------|------|
| Scale-up factor       | F                  | 1   | 1.6 | 2.5  | 4    | 6.3  |
| Classifier drive      | kW                 | 3   | 5.5 | 7.5  | 11   | 18.5 |
| Nominal air flow rate | Nm <sup>3</sup> /h | 560 | 900 | 1400 | 2300 | 3600 |
| Feed rate             | kg/h               | 60  | 90  | 140  | 230  | 360  |





The fillers of choice in the paint industry are limestone, and especially marble or calcite.

The advantages of these fillers are their:

- chemical stability, i.e. good weatherresistance
- mechanical strength, i.e. increased scratch-resistance
- alkaline behaviour, i.e. increased corrosion-resistance

For matt and satin-finish paints, a standard filler with a  $d_{50}$  to 2.5  $\mu$ m is used. In the case of this standard filler, the industry demands are extremely high.

- **Requirements:**
- low price
- sharp top size limitation
- consistent product quality

For the production of these fillers, Alpine offers compact systems (flow chart) that include a large ball mill and large multiwheel classifier. The ground product is conveyed to the ATP classifier direct from the mill entrained in the classifying air. This solution has the following advantages:

- an extremely compact system set-up, in other words low building costs,
- less units, i.e. low maintenance costs and high availability,
- fine end product with sharp top size limitation,
- monitoring of all product parameters, in other words a constantly high product quality and the possibility of automatic, i.e. unmanned, shift operation.

| Ball Mill    | Classifier | Throughput | Fineness        |  |
|--------------|------------|------------|-----------------|--|
| <b>S.O</b> . | ATP        | t/h        | d <sub>97</sub> |  |
| 200/600      | 500/4      | 3.0        | 8 µm            |  |
| 270/400      | 500/4      | 4.0        | 8 µm            |  |
| 300/500      | 630/4      | 6.0        | 8.5 µm          |  |



1





# SYSTEM EXAMPLE PROTEIN SHIFTING

Alpine employs the Turboplex ultrafine classifiers to achieve precise separations into a high-protein fraction and a low-protein fraction.

The classifiers have a high precision of cut, deliver top quality, a high proportionate yield and extremely low-protein flour concentrates. We distinguish here between standard and precision processes.

Precision process: This is used for wheat flour and a multitude of other raw materials. The process employs the Zirkoplex classifier mill ZPS (4) for the fine grinding and the Turboplex ultrafine classifier for the separation.

Soft wheat flour:

Reference values for the system configuration:

- Protein content: approx. 10 %
- Flour fineness:
- approx. 65 % < 32 µm
- approx. 85 % < 63 µm
- Fg = fines
- Gg = coarse material

The table gives reference values for the combination of a Zirkoplex classifier mill ZPS with a Turboplex ultrafine classifier ATP-GS as shown in the system schematic.

80

| Mill<br>ZPS | Classifier<br>ATP-GS | Feed<br>kg/h | Yield<br>% | Protein conte<br>Fg | ent %<br>Gg |
|-------------|----------------------|--------------|------------|---------------------|-------------|
| 315         | 315                  | 500          | 20 - 25    | approx. 20          | 5.5 - 6     |
| 500         | 315                  | 1250         | 20 - 25    | approx. 20          | 5.5 - 6     |
| 630         | 500                  | 1800         | 20 - 25    | approx. 20          | 5.5 - 6     |
| 750         | 750                  | 3000         | 20 - 25    | approx. 20          | 5.5 - 6     |

- 1 Feed bin
- 2 Feed metering device
- 3 Rotary valve
- 4 Zirkoplex classifier mill ZPS
- 5 Product collection filter
- 6 Fan
- 7 Feed screw 8 Turboplex classifier ATP
- End-product bin for fines
- 10 Process control

1 1 6 3 8 9 2 3 10 3 

# APPLICATION TESTING CENTRE

machine options. This way, customers can be assured that all system design and as the basis for a performance guarantee. process options have been considered and that the system offered represents the optimum solution.

and production scale. The test facility is supported by a modern and is extended by new developments. testing laboratory that includes a wide range of analytical equipment enabling accurate measurement of particle size, particle shape, density, etc.

# ALPINE TESTING CENTRE IN AUGSBURG



ALPINE LABORATORY -AIR JET SIEVE 200 LS-N

The design of a grinding and classification system is normally Skilled and vastly experienced Alpine Engineers conduct the trials, based on results from a programme of trials conducted in the recording all operating data that enables ongoing discussions with HOSOKAWA ALPINE Test Centre. The trials can be complex and the customer during the trial. Upon completion of the trial a time consuming and can include evaluation of a wide range of comprehensive test report is prepared which can then be used for

It is essential that test facilities are kept at the leading edge of Our test centre is extensively equipped with a wide range of different technology if optimum baseline data is to be provided for system grinding and classification systems, available both on a laboratory design. Our range of machines and systems is continuously upgraded

22 / 23

# **FUNDAMENTALS**

# 

Air classification is a method of separating powdery, granular or fibrous materials in accordance with their settling velocity as a function of particle size, density and particle shape. Ideally, the separation effect of an air classifier should be such that all particles which exceed the "cut point" are transported into the coarse fraction

and the smaller particles into the fines fraction. Such accuracy, however, is virtually impossible to achieve. Regardless of the type of air classifier used, a certain amount of fines is always going to be present in the coarse fraction and vice versa, the so-called overlap zone.

# FREQUENCY DISTRIBUTION CURVE



The scientifically precise representation of a separation is the grade efficiency or Tromp curve T(x). The grade efficiency is defined as that portion of feed material which migrates into the coarse fraction. In practice, however, the grade efficiency curve is seldom determined because for most customers, it is usually the fineness and the fines yield that are the crucial criteria.

The median  $x_{50}$  (T(x) = 0.5) of the grade efficiency curve is called the cut point. Fine separations achieve cut points to the order of 1 µm these days. The steepness of the grade efficiency curve  $\kappa$  is approximated in the equation:

# Symbols

x = Particle size f = Fines fraction g = Coarse fraction g + f = 1

Frequency distribution  $q_A(x) =$  Feed material  $q_F(x) = Fines$ qG(x) = Coarse

Cumulative distribution  $Q_A(x) =$  Feed material  $Q_F(x) = Fines$  $Q_G(x) = Coarse$ T(x) = Grade efficiency(according to Tromp)

 $T(x) = \frac{g \times q_G(x)}{x}$  $q_A(x)$ 

$$\kappa = \frac{x_{25}}{x_{75}}$$

The steepness is a measure for the precision of cut, whereby good values for  $\kappa$  range between 0.5 and 0.6. If the requirements are extremely high regarding the purity of the coarse material, values of around 0.8 can also be achieved. In many production systems, however, the classifiers are so heavily loaded that the grade efficiency curve in the fine range does not go below 0.25. In this case,  $\kappa$  cannot be determined.

Because calculation of the grade efficiency curve is relatively time-consuming, the socalled overlap cut point xü is applied in

# OVERLAP CUT POINT X<sub>II</sub>



With this equation, an experienced engineer can estimate the expected fines portion f for different cut points from a known feed particle size distribution  $Q_A(x)$ . This is much more difficult to determine for classification than it is for screening.

The mass flow rates in large production-scale systems can often only be measured with great difficulty or over long periods of time. The fines portion can be calculated using the particle size distributions of feed material, fines and coarse material as shown in the equation below.

One needs to consider the feed material, fines and coarse material of the same particle size  $x_0$  in order to calculate the fines portion from the cumulative undersize at this particle size.





$$1-Q_F(x_{\ddot{U}})=Q_G(x_{\ddot{U}})=\ddot{U}$$

The overlap Ü is now in turn a measure for the precision of cut. Extremely sharp separations can achieve an overlap of only 5%. In many cases, however, the overlap will have a value of 10%; and in the case of heavily loaded mineral powder classifiers and difficult feed materials, the overlap can be between 20 and 25%. The mass balance of a classifier results in:

$$f = \frac{Q_A(x_{\ddot{U}}) - \ddot{U}}{1 - 2 \times \ddot{U}}$$

$$f = \frac{Q_A(x_0) - Q_G(x_0)}{Q_F(x_0) - Q_G(x_0)}$$

24 / 25

# **HOSOKAWA MICRON GROUP**

WORLDWIDE



The HOSOKAWA MICRON GROUP is an international supplier of machines, systems, processes and services. Based on this comprehensive performance range, HOSOKAWA offers process solutions for a great number of different business segments:

# **PROCESS TECHNOLOGIES FOR TOMORROW<sup>SM</sup>**



HOSOKAWA is the world's largest provider of processing systems for the field of powder and particle processing. Renowned names such as ALPINE, Bepex, Stott, Vitalair, Rietz, Mikro, Micron, and Vrieco-Nauta are all included in the Group's range. Regardless of the size, i.e. production-scale systems, pilot systems or laboratory equipment, HOSOKAWA's products and technologies are used in numerous process stages, for example during comminution, mixing, drying, agglomeration, classification, weighing and metering.

# 2. BLOWN FILM PROCESSING

HOSOKAWA ALPINE is one of the world's foremost suppliers of film blowing systems. As a one-stop shopping partner, Alpine granule feeding systems to film winders, from single-layer die heads to 9-layer lines, and from simple speed regulators to stateof-the-art process control systems. And with ALPINE's own film orientation lines, complete systems are now available which facilitate film upgrading and enhancement processes.

# **3. CONFECTIONERY & BAKERY TECHNOLOGY**

The vast fund of know-how built up by the Bepex, Kreuter and supplies complete systems for the manufacture of blown film, from Ter Braak companies over many long years makes the HOSOKAWA Confectionery and Bakery Group the ideal partner for the confectionery industry. A complete range of machines and production systems is available or can be custom-designed for each process step, from preparation of the raw materials and confectionery pastes to the end product.

# HOSOKAWA ALPINE POWDER AND PARTICLE PROCESSING

HOSOKAWA ALPINE P.O. Box 10 11 51 86001 Augsburg, Gerr

Delivery address: Peter-Doerfler-Str. 13 86199 Augsburg, Ger

DIVISIONS **Chemical Division** Phone: + 49 821 5906-238 + 49 821 5906-438 Fax:

Pharma & Food Divisi Phone: + 49 821 59 + 49 821 59 Fax: E-mail: pharma@al

Minerals & Metals Di Phone: + 49 821 59 + 49 821 59 Fax: E-mail: mineral@al

| Aktiengesellschaft | HOSOKAWA MICRON                  |                           |  |  |  |  |
|--------------------|----------------------------------|---------------------------|--|--|--|--|
|                    | A Division of Hosokawa Alpine AG |                           |  |  |  |  |
| many               | Welserstr. 9/11                  |                           |  |  |  |  |
|                    | 51149 Cologne, Germany           |                           |  |  |  |  |
|                    | Tel:                             | + 49 2203 308-0           |  |  |  |  |
| 25                 | Fax:                             | + 49 2203 308-125         |  |  |  |  |
| man                | E-mail:                          | sales@hmgmbh.hosokawa.com |  |  |  |  |
|                    | Internet: www.hosokawamicron.de  |                           |  |  |  |  |
|                    |                                  |                           |  |  |  |  |

E-mail: chemical@alpine.hosokawa.com

| on                | Service Division |                               |
|-------------------|------------------|-------------------------------|
| 06-283            | Phone:           | + 49 821 5906-271             |
| 06-620            | Fax:             | + 49 821 5906-457             |
| pine.hosokawa.com | E-mail:          | service@alpine.hosokawa.com   |
|                   |                  |                               |
| vision            | Recycling        | & Granulators Division        |
| 06-279            | Phone:           | + 49 821 5906-415             |
| 06-610            | Fax:             | + 49 821 5906-630             |
| pine.hosokawa.com | E-mail:          | recycling@alpine.hosokawa.com |
|                   |                  |                               |

# www.alpinehosokawa.com

# **PROCESS TECHNOLOGIES FOR TOMORROW<sup>SM</sup>**